Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Biophys Mol Biol ; 167: 18-25, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619250

RESUMO

Applications of mathematical models to developmental biology have provided helpful insight into various subfields, ranging from the patterning of animal skin to the development of complex organ systems. Systems involved in patterning within morphology present a unique path to explain self-organizing systems. Current efforts show that patterning systems, notably Reaction-Diffusion and specific signaling pathways, provide insight for explaining morphology and could provide novel applications revolving around the formation of biological systems. Furthermore, the application of pattern formation provides a new perspective on understanding developmental biology and pathology research to study molecular mechanisms. The current review is to cover and take a more in-depth overlook at current applications of patterning systems while also building on the principles of patterning of future research in predictive medicine.


Assuntos
Padronização Corporal , Modelos Biológicos , Animais , Biologia do Desenvolvimento , Difusão , Modelos Teóricos
2.
Front Cardiovasc Med ; 8: 675291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179138

RESUMO

Background: In the study of early cardiac development, it is essential to acquire accurate volume changes of the heart chambers. Although advanced imaging techniques, such as light-sheet fluorescent microscopy (LSFM), provide an accurate procedure for analyzing the heart structure, rapid, and robust segmentation is required to reduce laborious time and accurately quantify developmental cardiac mechanics. Methods: The traditional biomedical analysis involving segmentation of the intracardiac volume occurs manually, presenting bottlenecks due to enormous data volume at high axial resolution. Our advanced deep-learning techniques provide a robust method to segment the volume within a few minutes. Our U-net-based segmentation adopted manually segmented intracardiac volume changes as training data and automatically produced the other LSFM zebrafish cardiac motion images. Results: Three cardiac cycles from 2 to 5 days postfertilization (dpf) were successfully segmented by our U-net-based network providing volume changes over time. In addition to understanding each of the two chambers' cardiac function, the ventricle and atrium were separated by 3D erode morphology methods. Therefore, cardiac mechanical properties were measured rapidly and demonstrated incremental volume changes of both chambers separately. Interestingly, stroke volume (SV) remains similar in the atrium while that of the ventricle increases SV gradually. Conclusion: Our U-net-based segmentation provides a delicate method to segment the intricate inner volume of the zebrafish heart during development, thus providing an accurate, robust, and efficient algorithm to accelerate cardiac research by bypassing the labor-intensive task as well as improving the consistency in the results.

3.
Sci Rep ; 10(1): 3246, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094400

RESUMO

Multidimensional correlation magnetic resonance imaging (MRI) is an emerging imaging modality that is capable of disentangling highly heterogeneous and opaque systems according to chemical and physical interactions of water within them. Using this approach, the conventional three dimensional MR scalar images are replaced with spatially resolved multidimensional spectra. The ensuing abundance in microstructural and chemical information is a blessing that incorporates a real challenge: how does one distill and refine it into images while retaining its significant components? In this paper we introduce a general framework that preserves the spectral information from spatially resolved multidimensional data. Equal weight is given to significant spectral components at the single voxel level, resulting in a summarized image spectrum. This spectrum is then used to define spectral regions of interest that are utilized to reconstruct images of sub-voxel components. Using numerical simulations we first show that, contrary to the conventional approach, the proposed framework preserves spectral resolution, and in turn, sensitivity and specificity of the reconstructed images. The retained spectral resolution allows, for the first time, to observe an array of distinct [Formula: see text]-[Formula: see text]-[Formula: see text] components images of the human brain. The robustly generated images of sub-voxel components overcome the limited spatial resolution of MRI, thus advancing multidimensional correlation MRI to fulfilling its full potential.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Análise Numérica Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...